Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 28(12): 7460-7471, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867051

RESUMO

The discovery of novel biocontrol agents requires the continuous scrutiny of native microorganisms to ensure that they will be useful on a regional scale. The goal of the present work was to discover novel antagonistic bacteria against Fusarium oxysporum ff. spp. lycopersici race 3 (Fol R3) and radicis-lycopersici (Forl) causing Fusarium wilt disease and Fusarium crown and root rot of tomatoes, respectively. High-throughput liquid antagonism screening of 1,875 rhizospheric bacterial strains followed by dual confrontation assays in 96-well plates was used to select bacteria exhibiting > 50% fungal growth inhibition. In a second dual confrontation assay in 10-cm Petri dishes, bacteria showing > 20% Fol R3 or Forl growth inhibition were further screened using a blood hemolysis test. After discarding ß-hemolytic bacteria, a seedling antagonistic assay was performed to select five potential antagonists. A phylogenetic analysis of 16S rRNA identified one strain as Acinetobacter calcoaceticus (AcDB3) and four strains as members of the genus Bacillus (B. amyloliquefaciens BaMA26, Bacillus siamensis BsiDA2, B. subtilis BsTA16 and B. thuringiensis BtMB9). Greenhouse assays demonstrated that BsTA16 and AcDB3 were the most promising antagonists against Fol R3 and Forl, respectively. Pathogen biocontrol and growth promotion mechanisms used by these bacteria include the production of siderophores, biofilm, proteases, endoglucanases and indole acetic acid, and phosphate solubilization. These five bacteria exerted differential responses on pathogen control depending on the tomato hybrid, and on the growth stage of tomatoes. We report for the first time the use of an Acinetobacter calcoaceticus isolate (AcDB3) to control Forl in tomato under greenhouse conditions.

2.
J Sci Food Agric ; 100(7): 3228-3235, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32108339

RESUMO

BACKGROUND: Protein glycation by Maillard reaction is commonly used to improve the functional and bioactive properties of food proteins. It is also known that this glycation method can be accelerated by heat without the need for chemical reagents that could be harmful to health. In this study, glycoconjugates were obtained from a mixture of connective tissue proteins (CTP) from jumbo squid (Dosidicus gigas) and two different sugars, dextran (DEX; 10 kDa) and glucose (GLU), using protein-to-carbohydrate ratios of 1:2 and 1:3, in solution at 50 °C for 6 h. The glycation products were characterized by means of their physicochemical properties and cytotoxic effect. RESULTS: The intensity of the browning measured at A420nm and A294nm in glycoconjugates showed no significant difference (P < 0.05). CTP-DEX (1:2) and CTP-DEX (1:3) were those products with the greatest fluorescence related to the intermediate stage in the Maillard reaction, and also with the highest degree of glycation, which was confirmed using o-phthaldialdehyde assay and Fourier transform infrared analysis. The values of cellular viability for CTP-GLU (1:3), CTP-DEX (1:2, 1:3) as well as CTP (0, 6 h) were around 92-103%. CONCLUSIONS: The operational parameters used in the glycation process achieved the formation of glycoconjugates from proteins of D. gigas, showing no cytotoxic effect on the HaCaT cell line. This research proposes an alternative for the modification of proteins and opens the way to future investigations regarding the bioactivity of these macromolecules to have applications for the use of byproducts in food science and technology. © 2020 Society of Chemical Industry.


Assuntos
Decapodiformes/química , Glicoconjugados/química , Resíduos/análise , Animais , Tecido Conjuntivo/química , Dextranos/química , Glucose/química , Glicosilação , Reação de Maillard , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...